Reg. No. : \square

Question Paper Code: 97237

B.E./B.Tech. DEGREE EXAMINATION, DECEMBER 2015/JANUARY 2016.

Second Semester
 Civil Engineering
 MA 6251 - MATHEMATICS - II

(Common to all branches except Marine Engineering)
(Regulation 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A $-(10 \times 2=20$ marks $)$

1. Prove that $\operatorname{Grad}(1 / r)=\frac{-\vec{r}}{r^{3}}$.

2: Evaluate $\int_{C}(y z \vec{i}+x z \vec{j}+x y \vec{k}) \cdot d \vec{r}$ where C is the boundary of a surface S.
3. Solve $\left(D^{3}-3 D^{2}+3 D-1\right) y=0$.
4. Obtain the differential equation of x alone, given $x^{\prime}=7 x-y$ and $y^{\prime}=3 x+y$.
5. Prove that $L\left(\int_{0}^{t} f(t) d t\right)=\frac{F(s)}{s}$, where $L(f(t))=F(s)$.
6. Find $L^{-1}\left(\log \frac{s}{s-a}\right)$.
7. Prove that the family of curves $u=c, v=k$ cuts orthogonally for an analytic function $f(z)=u+i v$.
8. Find the invariant points of a function $f(z)=\frac{z^{8}+7 z}{7-6 z i}$.
9. Define and give an example of essential singular points.
10. Express $\int_{0}^{\pi} \frac{d \theta}{2 \cos \theta+\sin \theta}$ as complex integration.

$$
\text { PART B }-(5 \times 16=80 \mathrm{marks})
$$

11. (a) (i) Find the values of constants a, b, c so that the maximum value of the directional derivative of $\phi=a x y^{2}+b y z+c z^{2} x^{3}$ at $(1,2,-1)$ has a magnitude 64 in the direction parallel to z-axis.
(ii) Verify Green's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \vec{i}-2 x y \dot{j}$ taken round the rectangle bounded by the lines $x= \pm a, y=0$ and $y=b$.

> Or
(b) (i) - A fluid motion is given by $\vec{V}=(y+z) \vec{i}+(z+x) \vec{j}+(x+y) \vec{k}$. Is this motion irrotational and is this possible for an incompressible fluid?
(ii) Verify Gauss divergence theorem for
$\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-x z\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$. And S is the surface of the rectangular parallelepiped bounded by $x=0, x=a, y=0, y=b, z=0$ and $z=c$.
12. (a) (i) Solve $\left(D^{3}+2 D^{2}+D\right) y=e^{-x}+\cos 2 x$:
(ii) Solve $y^{\prime \prime}=x, x^{\prime \prime}=y$.

Or
(b) (i). Solve $y^{\prime \prime}+y=\sec x$.
(ii) Solve $(2 x+7)^{2} y^{\prime \prime}-6(2 x+7) y^{\prime}+8 y=8 x$.
13. (a) (i) Find $L\left(e^{-t} \sin ^{2} 3 t\right)$ and $L\left(\frac{e^{-t}-\cos t}{t}\right)$.
(ii) Solve $x^{\prime \prime}+2 x^{\prime}+5 x=e^{-t} \sin t ; x(0)=0$ and $x^{\prime}(0)=1$ using Laplace transform.
Or
(b) (i) State second shifting theorem and also find $L^{-1}\left(\frac{e^{-s}}{\sqrt{s-1}}\right)=\quad(2+4)$
(ii) Find $L^{-1}\left(\frac{3 s+1}{(s+1)^{4}}\right)$.
(iii) Find the Laplace transform for $f(t)=\sin \frac{\pi t}{a}$, such that $f(t+a)=f(t)$.
14. (a) (i) If $u=x^{2}-y^{2}, v=\frac{y}{x^{2}+y^{2}}$; prove that u and v are harmonic functions but $f(z)=u+i v$ is not an analytic function.
(ii) Show that the function $u=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is a real part of an analytic function. Also find its conjugate harmonic function v and express $f(z)=u+i v$ as function of z.

Or
(b) (i) Is $f(z)=z^{n}$ analytic function everywhere?
(ii) Find the image of the lines $u=a$ and $v=b$ in w-plane into z-plane under the transformation $z=\sqrt{w}$.
(iii) Find the bilinear transformation which maps $I,-i, 1$ in z-plane into $0,1, \infty$ of the w plane respectively.
 $|z|=2$.
(iii) Evaluate $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}$ using contour integration.
Or
(b) (i) Obtain the Laurent's expansion of $f(z)=\frac{z^{2}-4 z+2}{z^{3}-2 z^{2}-5 z+6}$ in

$$
\begin{equation*}
3<|z+2|<5 \tag{6}
\end{equation*}
$$

(ii) Evaluate $\int_{C} \frac{z^{3} d z}{(z-1)^{4}(z-2)(z-3)}$ where C is $|z|=2.5$; using residue theorem.

